例1 桌上放着一个茶壶,四位同学从各自的方向进行观察。
请指出下面四幅图分别是哪位同学看到的。
例2 1米约相当于 根铅笔长;北京 到南京的铁路长约1000 。
例3 测量一个不规则图形(如一片树叶)的周长。
例4 用一张正方形的纸作单位测量课桌面的面积。
例5 在下列现象中,哪些是平移或旋转现象?
(1)方向盘的转动; (2)水龙头开关的转动;
(3)电梯的上下移动; (4)钟摆的运动。
三、统计与概率
在本学段中,学生将对数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方 法,能根据统计结果回答一些简单的问题,初步感受事件发生的不确定性和可能性。
在教学中,应注重借助日常生活中的例子,让学生经历简单的数据统计过程;应注重对不确 定性和可能性的直观感受。
(一)具体目标
1.数据统计活动初步
(1)能按照给定的标准或选择某个标准(如数量、形状、颜色)对物体进行比较、排列和 分类;在比较、排列、分类的活动中,体验活动结果在同一标准下的一致性、不同标准下的 多样性。
(2)对数据的收集、整理、描述和分析过程有所体验。
(3)通过实例,认识统计表和象形统计图、条形统计图(1格代表1个单位),并完成相应 的图表。
(4)能根据简单的问题,使用适当的方法(如计数、测量、实验等)收集数据,并将数据 记录在统计表中。[参见例1]
(5)通过丰富的实例,了解平均数的意义,会求简单数据的平均数(结果为整数)。
(6)知道可以从报刊、杂志、电视等媒体中获取数据信息。
(7)根据统计图表中的数据提出并回答简单的问题,能和同伴交换自己的想法。
2.不确定现象
(1)初步体验有些事件的发生是确定的,有些则是不确定的。[参见例2]
(2)能够列出简单试验所有可能发生的结果。
(3)知道事件发生的可能性是有大小的。[参见例3]
(4)对一些简单事件发生的可能性作出描述,并和同伴交换想法。[参见例4]
(二) 案例
例1 调查一下你跑步后脉搏跳动会比静止时快多少,并将测得的数据记录下来,与同伴进行交流。
例2 下列现象中,哪些是确定的?
(1) 下周三本地下雨; (2)明天有人走路。
例3 随意从放有4个红球和1个黑球的口袋中,摸出一个球,摸到红球的可能性与摸到黑球的可能性哪个大?
例4 用"一定" "经常" "偶尔" "不可能" 等词语来描述生活中一些事件发生的可能性。
四、实践活动
在本学段中,学生通过实践活动,初步获得一些数学活动的经验,了解数学在日常生活中的 简单应用,初步学会与他人合作交流,获得积极的数学学习情感。
教学时,应首先关注学生参与活动的情况,引导学生积极思考、主动与同伴 合作、积极与他人交流,使学生增进运用数学解决简单实际问题的信心,同时意识到自己在集体中的作用。
(一) 具体目标
1. 经历观察、操作、实验、调查、推理等实践活动;在合作与交流的过程中,获得良好的 情感体验。
2. 获得一些初步的数学实践活动经验,能够运用所学的知识和方法解决简单问题。
3. 感受数学在日常生活中的作用。
(二)案例
例 某班要去当地三个景点游览,时间为
8:00~16:00。请你设计一个游览计划,包括时间安排、费用、路线等 。
说明 学生在解决这个问题的过程中,将从事以下活动:
①了解有关信息,包括景点之间的路线图及乘车所需时间、车型与租车费用、 同学喜爱的食品和游览时需要的物品等;
②借助数、图形、统计图表等表述有关信息;
③计算乘车所需的总时间、每个景点的游览时间、所需的总费用、每个同学需要交纳的 费用等;
④分小组设计游览计划,并进行交流。
通过解决这个问题,学生可以提高收 集、整理信息的能力,养成与人合作的意识。
一、数与代数
在本学段中,学生将进一步学习整数、分数、小数和百分数及其有关运算,进一步发展数感 ;初步了解负数和方程;开始借助计算器进行复杂计算和探索数学问题;获得解决现实生活 中简单问题的能力。
教学时,应通过解决实际问题进一步培养学生的数感,增进学生对
运算意义的理解;应重视口算,加强估算,鼓励算法多样化;应使学生经历从实际问 题中抽象出 数量关系,并运用所学知识解决问题的过程;应避免繁杂的运算,避免将运算与应用割裂开 来,避免对应用题进行机械的程式化训练。
(一)具体目标
1.数的认识
(1)在具体的情境中,认、读、写亿以内的数,了解十进制计数法,会用万、亿为单位表 示大数。
(2)进一步认识小数和分数,认识百分数;探索小数、分数和百分数之间的关系,并会进 行转化(不包括将循环小数化为分数)。
(3)会比较小数、分数和百分数的大小。
(4)在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。
(5)结合现实情境感受大数的意义,并能进行估计。[参见例1]
(6)进一步体会数在日常生活中的作用,会运用数表示事物,并能进行交流。[参见 例2和例3]
(7)在1~100的自然数中,能找出10以内某个自然数的所有倍数,并知道2,3,5的倍数的 特征,能找出10以内两个自然数的公倍数和最小公倍数。
(8)在1~100的自然数中,能找出某个自然数的所有因数,能找出两个自然数的公因数和最大公因数。
(9)知道整数、奇数、偶数、质数、合数。
2.数的运算
(1)会口算百以内一位数乘、除两位数。
(2)能笔算三位数乘两位数的乘法,三位数除以两位数的除法。
(3)能结合现实素材理解运算顺序,并进行简单的整数四则混合运算(以两步为主,不超 过三步)。
(4)探索和理解运算律,能应用运算律进行一些简便运算。
(5)在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。
(6)会分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两 步为主,不超过三步)。
(7)会解决有关小数、分数和百分数的简单实际问题。
(8)在解决具体问题的过程中,能选择合适的估算方法,养成估算的习惯。[参见例4 至例6]
(9)能借助计算器进行较复杂的运算,解决简单的实际问题,探索简单的数学规律。 [参见例7]
3.式与方程
(1)在具体情境中会用字母表示数。
(2)会用方程表示简单情境中的等量关系。
(3)理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3)。4.正比例、反比例
(1)在实际情境中理解什么是按比例分配,并能解决简单的问题。
(2)通过具体问题认识成正比例、反比例的量。
(3)能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值。[参见例8]
(4)能找出生活中成正比例和成反比例量的实例,并进行交流。
5.探索规律
探求给定事物中隐含的规律或变化趋势。[参见例9和例10]
(二) 案例
例1 一个正常人心跳100万次大约需要多长时间?100万小时相当于多少年?100万张纸有多厚?
例2 某学校为每个学生编号,设定末尾用1表示男生,用2表示女生;9713321表示“1997年入学的一年级三班的32号同学,该同学是男生”。那么,9532012表示的学生是哪一年入学的?几年级几班的?学号是多少?是男生还是女生?
例3 你是否喜欢数学?如果用5,4,3,2,1分别代表 从最喜欢到最不喜欢之间的5种程度,你选哪个数?说明理由。如果小明选择2,说明什么?如果小立比较喜欢数学,他最可能选几?
例4 李阿姨想买2袋米(每袋354元)、148元的 牛肉、67元的蔬菜和128元的鱼。李阿姨带了100元,够吗?
例5 92×71的结果大约是多少?12+47的结果比1大吗?
例6 估测一粒花生的质量。
说明 可以通过称50粒花生的质量进行估测,也可以通过数100克花生的粒数进行估测。
例7 任意给定四个互不相同的数字,组成最大数和最小数,并用最大数减去最小数。对所得结果的四个数字重复上述过程,你会发现什么呢?(利用计算器)
例8 彩带每米售价4元,购买2米、3米、……彩带分别需要多少钱?
填一填:
长度/米 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | …… |
价钱/元 | 0 | 4 | , | , | , | , | , | , | , |
a.所描的点是否在一条直线上?
b.估计一下买15米的彩带大约要花多少元?
c.小刚买的彩带的长度是小红的3倍,他所花的钱是小红的几倍?
例9 完成序列,并说明理由。
05, 15, 45, 。
例10 联欢会上,小明按照3个红气球、2个黄气球、1 个绿气球的顺序把气球串起来装饰教室。你知道第16个气球是什么颜色吗?
说明 解决这个问题,学生可以有多种方法。如,用A表示红气球,B表 示 黄气球,C表示绿气球,则按照题意可以写成AAABBCAAABBC…从而找出第16个字母,并推出第16个气球的颜色。
二、空间与图形
在本学段中,学生将了解一些简单几何体和平面图形的基本特征,进一步学习图形变换 和确定物体位置的方法,发展空间观念。
在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、 操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换;应注 重 通过观察物体、认识方向、制作模型、设计图案等活动,发展学生的空间观念。
(一) 具体目标
1.图形的认识
(1)了解两点确定一条直线和两条相交直线确定一个点。
(2)能区分直线、线段和射线。
(3)体会两点间所有连线中线段最短,知道两点间的距离。
(4)知道周角、平角的概念及周角、平角、钝角、直角、锐角之间的大小关系。
(5)结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
(6)通过观察、操作,认识平行四边形、梯形和圆,会用圆规画圆。
(7)认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180 °。
(8)认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
(9)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的 展开图。
(10)能辨认从不同方位看到的物体的形状和相对位置。[参见例1]
2.测量
(1) 会用量角器量指定角的度数,会画指定度数的角,会用三角尺画30°,45°,60°,90°角。
(2)利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。
(3)探索并掌握圆的周长和面积公式。
(4)能用方格纸估计不规则图形的面积。[参见例2]
(5)通过实例,了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升 、 毫升),会进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
(6) 结 合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。
(7) 探索某些实物体积的测量方法。[参见例3]
3.图形与变换
(1) 用折纸等方法确定轴对称图形的对称轴,能在方格纸上画出一个图形的轴对称图形。
(2) 能利用方格纸等形式按一定比例将简单图形放大或缩小,体会图形的相似。
(3) 通过观察实例,认识图形的平移与旋转,能在方格纸上将简单图形平移或旋转90°。 [参见例4]
(4) 欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案。
4.图形与位置
(1) 了解比例尺;在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
(2) 能根据方向和距离确定物体的位置。[参见例5]
(3) 能描述简单的路线图。[参见例6]
(4) 在具体情境中,能用数对来表示位置,并能在方格纸上用数对确定位置。[参见例7]
(二)案例
例1
下面是一组立方块:
例6 画出从学校到家的路线示意图,并注明方向及主要参照物。
例7 小青坐在教室的第3行第4列,用(4,3)表示,小明坐在教室的第1行第3列应当怎样表示?
三、统计与概率
在本学段中,学生将经历简单的数据统计过程,进一步学习收集、整理和描述数据的方法,并根据数据分析的结果作出简单的判断与预测;将进一步体会事件发生可能性的含义,并能 计算一些简单事件发生的可能性。
在教学中,应注重所学内容与现实生活的密切联系;应注重使学生有意识地经历简单的数据 统计过程,根据数据作出简单的判断与预测,并进行交流;应注重在具体情境中对可能性的 体验;应避免单纯的统计量的计算。
(一) 具体目标
1.简单数据统计过程
(1)经历简单的收集、整理、描述和分析数据的过程(必要时可使用计算器)。
(2)根据实际问题设计简单的调查表。
(3)通过实例,进一步认识条形统计图(1格表示多个单位),认识折线统计图、扇形统计 图;根据需要,选择条形统计图、折线统计图直观、有效地表示数据。
(4)通过丰富的实例,理解平均数、中位数、众数的意义,会求数据的平均数、中位数、 众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征。[参见例1和例2]
(5)能从报刊杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。[参见例3]
(6)能设计统计活动,检验某些预测。[参见例4]
(7)能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。
(8)初步体会数据可能产生误导。[参见例5]
2.可能性
(1)体验事件发生的等可能性以及游戏规则的公平性,会求一些简单事件发生的可能性。
(2)能设计一个方案,符合指定的要求。[参见例6]
(3)对简单事件发生的可能性作出预测,并阐述自己的理由。[参见例7]
(二) 案例
例1 小明所在班级的学生平均身高是14米,小强 所在班级的学生平均身高是15米。 小明一定比小强矮吗?
例2 选择适当的统计量来表示我们班同学最喜爱的颜色 。
例3 在《中国日报》1999年10月1日的国庆专刊上, 刊 登了有关中国城市建设在建国5 0年来的发展情况, 下面摘录了一则中国城市数量统计图。你从这个统计图中获得了哪些 信息? 并和同学交流。
例5 某公司有15名职工,对外招聘时称该公司职工的月平均工资超过1200元。请分析下面的统计表,你怎样看待该公司公布的这个数?
职 务 | 经 理 | 副经理 | 职 员 |
人 数/人 | 1 | 2 | 13 |
月工资/元 | 5000 | 2000 | 800 |
说明 这个正方体的6个面上的数字可以分别为1,2,2,3,4,5。
例7 调查两支球队以往比赛的胜负情况,预测下场比赛 谁获胜的可能性大,并说明自己的理由。
四、综合应用
在本学段中,学生将通过数学活动了解数学与生活的广泛联系,学会综合运用所学的知识和 方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法,并 能与他人进行合作交流。
教学时,应引导学生从不同角度发现实际问题中所包含的丰富的数 学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。
(一) 具体目标
1. 有综合运用数与运算、空间与图形、统计与概率等相关知识解决一些简单实际问题的成 功体验,初步树立运用数学解决问题的自信心。
2. 获得综合运用所学知识解决简单实际问题的活动经验和方法。
3. 初步感受数学知识间的相互联系,体会数学的作用。
(二)案例
例1 设计合适的包装方式。
(1)现有4盒磁带,有几种包装方式?哪种方式更省包装纸?(重叠处忽略不计)
(2) 若有8盒磁带,哪种方式更省包装纸?(重叠处忽略不计)说明这是生活中常见的问题,通过解决这类问题可以培养学生综合运用所学知识解决实际问题的能力。
例2 上海的电视塔有多高?北京的电视塔有多高?它们的高度大约分别相当于几个教室的高度?分别相当于多少个学生手拉手的长度?还有什么样的办法可以形象地描述电视塔的高度 ?
说明 这个问题可以加深学生对大数的感知与认识,进一步发展数感。同 时,学生还能学习如何通过询问、查阅资料等调查方式来收集数据。
一、数与代数
在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。
在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从 实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。
(一)具体目标
1.数与式
(1)有理数
① 理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
② 借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不 含字母)。
③ 理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。
④ 理解有理数的运算律,并能运用运算律简化运算。
⑤ 能运用有理数的运算解决简单的问题。
⑥ 能对含有较大数字的信息作出合理的解释和推断。[参见例1]
(2)实数
① 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
② 了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某 些数的立方根,会用计算器求平方根和立方根。
③ 了解无理数和实数的概念,知道实数与数轴上的点一一对应。
④ 能用有理数估计一个无理数的大致范围。[参见例2]
⑤ 了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问 题的要求对结果取近似值。
⑥ 了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则 运算(不要求分母有理化)。
(3) 代数式
① 在现实情境中进一步理解用字母表示数的意义。
② 能分析简单问题的数量关系,并用代数式表示。[参见例3与例4]
③ 能解释一些简单代数式的实际背景或几何意义。[参见例5]
④ 会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值 进行计算。
(4)整式与分式
① 了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。
② 了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算( 其中的多项式相乘仅指一次式相乘)。
③ 会推导乘法公式:(a+b)(a-b)= a2-b2;(a+b)2 = a2+2ab+ b2,了解公式的几何背景,并能进行简单计算。
④ 会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
⑤ 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、 乘、除运算。[参见例6]
2.方程与不等式
(1)方程与方程组
① 能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数 学模型。
② 经历用观察、画图或计算器等手段估计方程解的过程。[参见例7]
③ 会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中 的分式不超过两个)。
④ 理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的 一元二次方程。
⑤ 能根据具体问题的实际意义,检验结果是否合理。
(2)不等式与不等式组
① 能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
② 会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组 成的不等式组,并会用数轴确定解集。
③ 能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单 的问题。
3.函数
(1)探索具体问题中的数量关系和变化规律[参见例8]
(2)函数
① 通过简单实例,了解常量、变量的意义。
② 能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。
③ 能结合图像对简单实际问题中的函数关系进行分析。[参见例9]
④ 能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值 。
⑤ 能用适当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10]
⑥ 结合对函数关系的分析,尝试对变量的变化规律进行初步预测。[参见例11]
(3)一次函数
① 结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
② 会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况 =。
③ 理解正比例函数。
④ 能根据一次函数的图象求二元一次方程组的近似解。
⑤ 能用一次函数解决实际问题。
(4)反比例函数
① 结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。
② 能画出反比例函数的图象,根据图象和解析表达式y=kx(k≠0 )探索并理解其性质(k>0或k<0时,图象的变化)。
③ 能用反比例函数解决某些实际问题。
(5)二次函数
① 通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
② 会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③ 会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决 简单的实际问题。
④ 会利用二次函数的图象求一元二次方程的近似解。
(二)案例
例1 一次水灾中,大约有20万人的生活受到影响,灾情 将持续一个月。请推断:大约需要组织多少顶帐篷?多少吨粮食?
说明 假如平均一个家庭有4口人,那么20万人需要5万顶帐篷;假如一个 人平均一天需要05千克的粮食,那么一天需要10万千克的粮食……
例2 估计√ 5 -1 与0.5哪个大
2
例3 在某地,人们发现某种蟋蟀叫的次数与温度之间有 如下的近似关系:记录蟋蟀每分叫 的次数,用这个次数除以7,然后再加上3,就得到当时的温度。温度(℃)与蟋蟀每分叫的 次数之间的关系是:
温度 = 蟋蟀每分叫的次数 ÷7+3。
试用字母表示这一关系。